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Figure 1—
Initial shock propaga-
tion of a strong shock 
through the two phases 
of a polycrystal struc-
ture. Th e continuous 
phase has higher density 
but lower sound speed.
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We performed several direct 
numerical simulations to 
investigate the polycrystal 
behavior in certain metals 

when subjected to strong shocks. Figure 1 
shows the initial confi guration and a shock 
generated by PBX 9501 at Chapman-Jouguet 
(C-J) pressure on the left  side of the structure 
passing through a 50 × 50 μm metal plate 
composed of two distinct phases of diff erent 
densities and compressibilities. Each element 
of 100 × 100 × 1 hexahedral grid was 
subdivided into four prisms to generate a 
triangular grid of 40000 prismatic elements 
to resolve interfaces between the two phases. 
It is not possible to complete this calculation 
in a Lagrangian mode because of the amount 
of turbulence generated at later times. Th us 
the calculation was carried out by moving the 
entire mesh “window” with the average fl uid 
velocity of the domain. Th e CHAD code [1, 2] 
with the interface tracking/reconstruction 
capability turned off  was employed for this 
calculation. Th e left  boundary was modeled 
by a constant-velocity piston until the shock 
cleared the plate, and then it was changed 
into an infl ow-outfl ow pressure-specifi ed 
boundary. Th e right boundary was treated as 

infl ow/outfl ow pressure-specifi ed boundary 
throughout the transient. Th e bottom and top 
boundaries were refl ective.

Figure 2 shows the comparison of initial 
density and density at 1000 ns, about 
990 ns aft er the shock has passed the plate. 
A considerable distortion and mixing are 
observed at this time. A clear evidence of 
mixing and turbulence is shown by the 
vorticity contours of Fig. 3.

Figure 4 shows the fl uctuating component of 
x-direction velocity ′ u ′ u  and its normalized 
value as a function of time. Th e exact 
expressions of how the fl uctuation component 
is defi ned also are given in Fig. 4. Th ese 
values are averages over the entire domain 
and not over any cross section. Th e cross-
sectional values are not meaningful because a 
meaningful estimate would require numerous 
calculations with diff erent polycrystal sizes 
and orientations. By the same argument the 
data in Fig. 4 are also not meaningful before 
~20 ns because it took ~10 ns for the shock 
to pass through the calculational domain. 
A signifi cant fi nding of this calculation is the 
surprising amount of ~15% kinetic energy in 
the turbulence fi eld near 100 ns. Such strong 
turbulence could have signifi cant implications 
for integral system calculations.

We plan to perform a macrocalculation using 
a statistically similar sample of several mm 
size under similar hydrodynamics conditions 
using the BHR turbulence model [3]. It will 
be interesting to fi nd out if such a model 
could predict a similar amount of turbulence 
kinetic energy.
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Figure 2—
Comparison of the 
initial density contours 
with those at 1000 ns.

Figure 3—
Snapshots of vorticity 
contours.

Figure 4—
Turbulence kinetic 
energy history.
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